Quantization for TVM

Ziheng Jiang TVM Conference, Dec 12th 2018

What is Quantization?

Converting weight value to low-bit integer like 8bit precision from float-point without significant accuracy drop.

Quantization for TVM

Gain Compression & Acceleration:

- Less storage space
- Faster arithmetic operation
- Friendly to accelerator and ultra

Choice Spaces for Quantization

- number of bit
 - 4bit, 8bit, 16bit
- quantization scheme:
 - symmetric, asymmetric, etc.
- hardware constraint:
 - e.g. prefer integer shift instead of float multiplication

Goal

flexibly.

Quantization for TVM

Instead of proposing "the only right way to achieve quantization in TVM", we would like to build a quantization workflow which can be customized

Quantization for TVM

Quantization for TVM

Code Sample

user can override the annotate function @register_annotate_function("nn.conv2d", override=True) def annotate_conv2d(ref_call, new_args, ctx): lhs, rhs = new args lhs = attach_simulated_quantize(lhs, sign=False, rounding='round') return expr.Call(ref call.op, [lhs, rhs], ref call.attrs)

assuming we have an existed mxnet model, convert it to relay graph graph, params = relay.frontend.from_mxnet(mxnet_model)

quantize the relay graph with all kinds of configure qgraph, qparams = quantize(graph, params)

... build and deploy it locally or remotely with tvm


```
rhs = attach simulated quantize(lhs, sign=False, rounding='stochastic round')
with qconfig(nbit dict={QFieldKind.ACTIVATION: 24}, global scale=8.0, skip k conv=1):
```


Demonstration with 8bit Symmetric Quantization

Global Scale	Accuracy
2.0	64.1%
4.0	68.1%
8.0	69.5%
16.0	69.6%

Accuracy Drop with ResNet18 (original 70.8%)

Time/ms	Cortex A53	VTA
ResNet18	307.09	64.87
MobileNet	131.14	51.96

End to End Performance

