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Amazon Sagemaker Neo

Enables developers to train machine learning models once 
and run them anywhere in the cloud and at the edge

Product targets
• Amazon Rekognition
• AWS DeepLens
• Amazon Lex
• …
• And a lot of internal/external 

products

Hardware targets
• Intel CPU, Intel graphics
• ARM CPU, ARM GPU
• Nvidia GPU
• FPGA
• ASIC
• …
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CONV Kernel tuning
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Intel Xeon Platinum 8000-series CPUs (Skylake)

• Multi-cores
• E.g., EC2 c5.9xlarge: 1 processor with 18 cores.

• AVX-512 supported
• 512-bit width registers (ZMM)
• E.g. vfmadd231ps -1664(%rax,%r13){1to16}, 

%zmm0, %zmm1
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CONV optimization
Data layout is important!
conv = tvm.compute(oshape, 
lambda n, oc, oh, ow: 
    tvm.sum( 
 data[n, ic, oh*stride+kh, ow*stride+kw] 
 * kernel[oc, ic, kh, kw], 
 axis=[ic, kh, kw]), 
) for (n, 0, N): 

  for (oc, 0, OC): 
    for (oh, 0, OH): 
      for (ow, 0, OW): 
        Out[n, oc, oh, ow] = 0 // init Out  
        for (ic, 0, IC): 
          for (kh, 0, KH): 
            for (kw, 0, KW): 
              // Out += In * Kernel

• NCHW -> NHWC 
• NCHW -> NCHW[x]c 

• OIHW-> OIHW[x]i[y]o
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CONV optimization
Utilize the AVX-512 ISA well

(broadcast) Load input to DRAM; 
Load kernels to ZMM; // up to 16 float32 
vfmadd input, kernel, output 
Store output back to DRAM
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DRAM
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vectorized FMA

Load 31 inputs to DRAM; 
Load kernels to ZMM; 
vfmadd input_1, kernel, output_1 
vfmadd input_2, kernel, output_2 
… 
vfmadd input_31, kernel, output_31 
Store output_{1…31} back to DRAM
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Intel Graphics on Amazon DeepLens

Hardware Configs: Intel HD Graphics 500 (Intel’s Gen 9)
• On-die integrated GPU
• 12 EUs, 0.55 GHz
• 7 physical threads per EU, 2 128-bit FPUs per EU
• 105.6 GFLOPS peak performance
• Work items in the same SIMD group form a subgroup sharing 4KB GRFs

• Intel Opencl ext: cl_intel_subgroups

• Shares the main memory with CPU
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Instruction examples and corresponding TVM instructions
• intel_sub_group_block_read/write ⇒ cache_read/write(buffer, 

“warp”, [result])  

• Intel_sub_group_shuffle ⇒ storage_align(axis, 16) and bind it to 
threads

Convolution:
• Work items work on a certain block of workloads to utilize local memory
• Layout transform for coalescing memory accesses
• Utilize cl_intel_subgroups operations
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Graph-level optimization
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Graph-level layout optimization
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Graph/tensor co-optimization

CONVi LayoutTransform CONVj

LayoutTransform CONVk LayoutTransform

CONVl

ELEWISE_ADD

LayoutTransform

CONV

LayoutTransform ?1 2 3

N-2 N-1 N

Yes

No
CONV schemes

CONV computing time: varies along
with different CONV schemes

Layout Transform time: varies
along with different CONV schemes

Dynamic programming + necessary heuristics
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End-to-end results Batch size = 1 

Intel CPU Intel Graphics
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Other functionalities
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Runtime multi-threading
Use a customized thread pool for CPU targets
• Lock-free queue using C++ atomics
• Thread-binding to physical cores
• Cache line padding
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ResNet-152 VGG-19

DenseNet-121 Inception-v3
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Graph Annotation

GPU

CPU

GPU

GPU

Annotation Copy node insertion Optimization/Compilation Runtime

GPU node CPU node Data copy node

GPU

CPU

GPU

GPU

TVM 
op

TVM  
op

TVM  
op

TVM  
op

GPU

CPU

GPU

GPU

CPU lib

GPU lib

CPU 
lib

GPU 
lib

graph lib file



© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Quantization on Intel CPUs

Hardware support : Fast INT8 operations with INT32 accumulation
INT8 conv2d kernel requires new schedule

• Performs reduction in groups of 4 INT8 elements to INT32 elements
• FP32 schedule does not require in-vector reduction
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ASICs – AWS inferentia
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Takeaways



© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Takeaways
• Industry needs an open standard compiler for DL

• AWS working on the TVM stack 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Takeaways
• Industry needs an open standard compiler for DL

• AWS working on the TVM stack 
 

• We are eager to collaborate with the community
• Talk to us, we have 10+ people here today!

• We are hiring!
• Write to Vin Sharma (vinarm@amazon.com) or Yida Wang 

(wangyida@amazon.com)

mailto:vinarm@amazon.com
mailto:wangyida@amazon.com

