
© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved. Amazon/Intel Confidential

AWS AI

Deep Learning Compiler

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Acknowledgement

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Amazon Sagemaker Neo

Enables developers to train machine learning models once
and run them anywhere in the cloud and at the edge

Product targets
• Amazon Rekognition
• AWS DeepLens
• Amazon Lex
• …
• And a lot of internal/external

products

Hardware targets
• Intel CPU, Intel graphics
• ARM CPU, ARM GPU
• Nvidia GPU
• FPGA
• ASIC
• …

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

CONV Kernel tuning

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Intel Xeon Platinum 8000-series CPUs (Skylake)

• Multi-cores
• E.g., EC2 c5.9xlarge: 1 processor with 18 cores.

• AVX-512 supported
• 512-bit width registers (ZMM)
• E.g. vfmadd231ps -1664(%rax,%r13){1to16}, 

%zmm0, %zmm1

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

CONV optimization
Data layout is important!
conv = tvm.compute(oshape,
lambda n, oc, oh, ow: 
 tvm.sum(
 data[n, ic, oh*stride+kh, ow*stride+kw]
 * kernel[oc, ic, kh, kw],
 axis=[ic, kh, kw]), 
) for (n, 0, N): 

 for (oc, 0, OC): 
 for (oh, 0, OH): 
 for (ow, 0, OW): 
 Out[n, oc, oh, ow] = 0 // init Out  
 for (ic, 0, IC): 
 for (kh, 0, KH): 
 for (kw, 0, KW): 
 // Out += In * Kernel

• NCHW -> NHWC
• NCHW -> NCHW[x]c

• OIHW-> OIHW[x]i[y]o

in_height

in_width

kernel_width

kernel_height

out_width

out_heightout_channel
(# of kernel)

in_channel

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

CONV optimization
Utilize the AVX-512 ISA well

(broadcast) Load input to DRAM;
Load kernels to ZMM; // up to 16 float32
vfmadd input, kernel, output
Store output back to DRAM

in_height

in_width

kernel_width

kernel_height

out_width

out_heightout_channel
(# of kernel)

in_channel

ow_inner

inputs kernels

ZMM_0

ZMM_1 - ZMM_{ow_inner}

+ ×

DRAM

outputs

vectorized FMA

Load 31 inputs to DRAM;
Load kernels to ZMM;
vfmadd input_1, kernel, output_1
vfmadd input_2, kernel, output_2 
…
vfmadd input_31, kernel, output_31
Store output_{1…31} back to DRAM

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Intel Graphics on Amazon DeepLens

Hardware Configs: Intel HD Graphics 500 (Intel’s Gen 9)
• On-die integrated GPU
• 12 EUs, 0.55 GHz
• 7 physical threads per EU, 2 128-bit FPUs per EU
• 105.6 GFLOPS peak performance
• Work items in the same SIMD group form a subgroup sharing 4KB GRFs

• Intel Opencl ext: cl_intel_subgroups

• Shares the main memory with CPU

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Instruction examples and corresponding TVM instructions
• intel_sub_group_block_read/write ⇒ cache_read/write(buffer,

“warp”, [result])

• Intel_sub_group_shuffle ⇒ storage_align(axis, 16) and bind it to
threads

Convolution:
• Work items work on a certain block of workloads to utilize local memory
• Layout transform for coalescing memory accesses
• Utilize cl_intel_subgroups operations

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Graph-level optimization

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Graph-level layout optimization

Data

CONV

BATCH_NORM

RELU POOLING

CONV

FLATTEN

NCHW

NCHW

NCHW

Undef

NCHW

KernelOIHW

Mean / VarianceC

Kernel

Data

CONV_NCHW16c

BATCH_NORM

RELU POOLING

CONV_NCHW16c

FLATTEN

NCHW16c

NCHW16c

NCHW16c

NCHW16c

Kernel

Mean / Variance

Kernel

LayoutTransformNCHW

NCHW16c

LayoutTransformOIHW16i16o OIHW

LayoutTransform CC16c

OIHW LayoutTransform

LayoutTransform

NCHW16c

NCHW
Undef

OIHW16i16o
OIHW

optimized
layout

LayoutTransform for
parameters can be

pre-computed during
compile time.

AlterOpLayout

NCHW

NCHW

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Graph/tensor co-optimization

CONVi LayoutTransform CONVj

LayoutTransform CONVk LayoutTransform

CONVl

ELEWISE_ADD

LayoutTransform

CONV

LayoutTransform ?1 2 3

N-2 N-1 N

Yes

No
CONV schemes

CONV computing time: varies along
with different CONV schemes

Layout Transform time: varies
along with different CONV schemes

Dynamic programming + necessary heuristics

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

End-to-end results Batch size = 1

Intel CPU Intel Graphics

0

0.5

1

1.5

2

2.5

Re
sNe
t-1
8

Re
sNe
t-3
4

Re
sNe
t-5
0

Re
sNe
t-1
01

Re
sNe
t-1
52

VG
G-1
1

VG
G-1
3

VG
G-1
6

VG
G-1
9

De
nse
Ne
t-1
21

De
nse
Ne
t-1
61

De
nse
Ne
t-1
69

De
nse
Ne
t-2
01

Inc
ep
tio
n-v
3

Mo
bile
Ne
t
SSD

MXNet OpenVINO TVM

0
0.2
0.4
0.6
0.8
1

1.2

Re
sNe
t-1
8

Re
sNe
t-3
4

Re
sNe
t-5
0

Re
sNe
t-1
01

Re
sNe
t-1
52 SSD

OpenVINO TVM

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Other functionalities

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Runtime multi-threading
Use a customized thread pool for CPU targets
• Lock-free queue using C++ atomics
• Thread-binding to physical cores
• Cache line padding

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

ResNet-152 VGG-19

DenseNet-121 Inception-v3

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Graph Annotation

GPU

CPU

GPU

GPU

Annotation Copy node insertion Optimization/Compilation Runtime

GPU node CPU node Data copy node

GPU

CPU

GPU

GPU

TVM
op

TVM
op

TVM
op

TVM
op

GPU

CPU

GPU

GPU

CPU lib

GPU lib

CPU
lib

GPU
lib

graph lib file

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Quantization on Intel CPUs

Hardware support : Fast INT8 operations with INT32 accumulation
INT8 conv2d kernel requires new schedule

• Performs reduction in groups of 4 INT8 elements to INT32 elements
• FP32 schedule does not require in-vector reduction

0

0.5

1

1.5

2

2.5

3

3.5

W1 W2 W3 W4 W5 W6 W7 W8 W9 W10 W11 W12 W13 W14 W15 W16 W17 W18 W19 W20 W21 W22 W23 W24 W25

Sp
ee

du
p

no
rm

ali
ze

d
to

 FP
32

 sc
he

du
le

s

Workloads

INT8 schedules speedup for varying workloads of conv2d

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

ASICs – AWS inferentia

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Takeaways

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Takeaways
• Industry needs an open standard compiler for DL

• AWS working on the TVM stack 
 

mailto:vinarm@amazon.com
mailto:wangyida@amazon.com

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Takeaways
• Industry needs an open standard compiler for DL

• AWS working on the TVM stack 
 

• We are eager to collaborate with the community
• Talk to us, we have 10+ people here today!

mailto:vinarm@amazon.com
mailto:wangyida@amazon.com

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Takeaways
• Industry needs an open standard compiler for DL

• AWS working on the TVM stack 
 

• We are eager to collaborate with the community
• Talk to us, we have 10+ people here today!

mailto:vinarm@amazon.com
mailto:wangyida@amazon.com

© 2018, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Takeaways
• Industry needs an open standard compiler for DL

• AWS working on the TVM stack 
 

• We are eager to collaborate with the community
• Talk to us, we have 10+ people here today!

• We are hiring!
• Write to Vin Sharma (vinarm@amazon.com) or Yida Wang

(wangyida@amazon.com)

mailto:vinarm@amazon.com
mailto:wangyida@amazon.com

