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simple to implement in HW… great!

Machine Learning Makes Computer Architecture Cool Again!

Fundamental trade-off between 
specialization and performance/efficiency.
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Challenge: Efficiently deploying deep learning everywhere
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Gaurav Kapoor, Core Machine Learning
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In the age of domain-specialized systems…

First major open source 
compiler collection

LLVM: Higher-Level IR, new 
optimizations, easier extensibility

Open source compilers have transformed our industry

Specialized compiler stack 
for Deep Learning



End the tyranny of closed deep learning systems!



Tianqi Chen
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TVM Open Source Community

Apache governance model: grant project ownership by merit. 

11 committers, 29 reviewers, 166 contributors. 

Contributed by the community, for the community.



Industrial Impact



Vin Sharma, Amazon SageMaker Neo

Amazon: vinarm@ | Twitter: ciphr@

TVM + AWS
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Chen Tian, Technical VP



Huawei Confidential

TVM on Huawei’s AI portfolio

CANN
(Compute Architecture for Neural Networks)

Ascend

…

Ascend-MaxAscend-MiniAscend-
Tiny

Ascend-
Lite

Ascend-
Nano

AI Applications

Consumer Device Public Cloud Private 
Cloud

Industrial 
IoT Device

Edge 
Computing

Application 
Enablement

Framework

Chip Enabler

IP & Chip

General 
APIs1

Advanced 
APIs

Pre-integrated SolutionsHiAI Service

HiAI 
Engine

ModelArts

MindSpore TensorFlow PyTorch PaddlePaddle

CCE lib/extensions Tensor Engine / TVM

Application enabling:
Full-pipeline services(ModelArts), hierarchical APIs, and pre-
integrated solutions

MindSpore： 
Unified training and inference framework for device, edge, and 
cloud (both standalone and cooperative)

CANN： 
Chip operators library and highly automated operators 
development toolkit

Ascend：
AI chip series based on unified scalable architecture



Huawei Confidential

Frameworks

model execution

TE/TVM

During model conversion we use TE/TVM to customize 
operators for completeness and performance.

Third-Party Operators

Model Conversion 

How do we use TVM

70+ operators are written by TVM ， bring us ~3x development efficiency improvement



Huawei Confidential!32

Successful Practice with Audi in Level 4 Autonomous Driving
~ A Complete City Commute Record ~

Driving in the evening

Traffic light identification Pedestrian identification

High-speed cruise Traffic Jam Pilot (TJP)

Automatic parking

Joint developed autonomous driving algorithm gains leading scores in industry authoritative 
KITTI 2D/3D/BEV tests!



Huawei Confidential!33

Smart Manufacturing
(intelligent quality inspection and flexible manufacturing)

Intelligent Care
(kindergarten and elderly care)

Smart Transportation
 (traffic light tuning, intelligent traffic guiding)

Atlas 200 Developer Kit

● 16 TOPS INT8@24 W
● 1 USB type-C, 2 CCM interfaces, 1 

GE network port, 1 SD card slot
● 8 GB memory

Atlas 300 AI Accelerator Card

● 64 TOPS INT8@75 W
● 64-channel HD video real-time analysis 

and JPEG decoding
● 32 GB memory, 204.8 GB/s memory 

bandwidth
● PCIe 3.0 x16, half-height half-length card

Atlas 800 AI Appliance

• Provides optimized AI environment 
based on the standard framework and 
programming environment

• Leverages high-performance  
GPU scheduling algorithms, improving 
resource utilization  
by over 15%

• Capable of processing 16-channel HD 
videos in the size of a set-top-box 
(STB)

• Delivers 4x higher performance over 
counterparts

Atlas 500 AI Edge Station

TVM is working on Atlas series product



HUAWEI TECHNOLOGIES CO., LTD. Huawei Confidential �34

Huawei’s Contributions on TVM
8 Contributors：
kun-zh, sgrechanik-h, libing4752, derisavi-huawei, solin319, ehsanmok, gaoxiong-1, jiacunjiang1215  

4 Reviewers：
Srkreddy1238 , PariksheetPinjari909 , siju-Samuel , Xqdan

We are working on：
1.Huawei Ascend ASIC support.
2.Front end to support Darknet, ONNX.
3.Optimization on Auto-TVM, IR extensions.
4.Tensorize, cache read/write, access_ptr API. 

In the future we will try to：
1.Codegen for fused operators.
2.NLP support.
3.More optimization.
4.Training Operators.



Meghan Cowan
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TVM 
2-bit activation 1-bit weight

62% top-1 ImageNet accuracy
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TensorflowLite
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Open Source Stack Overview
VTA Backends

• Simulator: out-of-
the-box testing to 
write compiler passes

• FPGA: fast design 
iteration, quick 
deployment, flexibility

• ASIC: industrial-
strength efficiency

High-Level Differentiable IR

Tensor Expression IR

VTA Runtime & JIT Compiler

VTA Hardware/Software Interface (ISA)

VTA MicroArchitecture VTA Simulator

Versatile Tensor 
Accelerator


Stack

(VTA)
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TVM+VTA Stack Goals

• Blue-print for a complete deep learning 
acceleration stack

• Experimentation framework for cross-
stack deep learning optimizations

• Open-source community for industrial-
strength deep learning acceleration



Carlos Guestrin
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High-Level Differentiable IR

Tensor Expression IR

LLVM, CUDA, Metal VTA

Edge 
FPGA

Cloud 
FPGA

ASIC

Model

Standalone 
training deployment

• Automatic generation of gradient programs 

• Support for customized data types and FPGA 
training

• Support for distributed execution, and 
integration with technology such as PHub 
(see Liang’s talk).

More details on the Relay talk later today!

Automatic
Differentiation

Gradient Program for Training 
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On the horizon…

Automation

Training

Hardware

AutoDiff  
with Relay

Training  
on-device

Tradeoff accuracy/
throughput/Joules

Auto 
quantization

Full-program  
optimization

Automated  
HW design

VTA Chisel 
design

ASIC 
flow

Training on 
VTA



Big THANKS to our sponsors!



Keynote, TVM Overview,TVM @ Amazon9:00

Automation, HW Specialization, Security 

Boxed lunches12:30

Training, Programming Systems, Hardware13:30

Break, contributors meetup15:20

Compilers, FPGAs15:50

Lightning talks16:30

Community formation17:35

18:10 Social (food, drinks)
20:00 adjourn

Break11:05

11:25

Keynote (SAMPL, Apple, Amazon, Huawei)
TVM Overview – Tianqi Chen, UW
Deep Learning Compilation at Amazon – Yida Wang, Amazon

AutoTVM & Device Fleet – Eddie Yan, UW
VTA Open Source Deep Learning Accelerator – Thierry Moreau, UW
Secure Enclaves for Deep Learning – Nick Hynes, UC Berkeley/Oasis Labs

Kunle Olukotun/Raghu Prabhakar, Stanford & SambaNova
Machine Programming – Justin Gottschlich, Intel
PlaidML Stripe: Polyhedral IR + Model-guided Optimization – Brian Retford, Intel
The Relay Differentiable IR for TVM – Jared Roesch, UW
Scalable Distributed Training with Parameter Hub – Liang Luo, UW
The HammerBlade ML Supercomputer – Michael Taylor, UW

Andrew Tulloch, Facebook
Graham Schelle, Xilinx

Markus Weimer, Microsoft and Apache Software Foundation


