1st TVM and Deep Learning Compilation Conference Sampl PAUL G. JUDUL

December 12, 2018

Welcome to the 1st TVM and Deep Learning Compilation Conference!

Welcome to the 1st TVM and Deep Learning Compilation Conference!

Machine learning is amazing...

Machine learning is amazing...

super human accuracy, self driving cars, automated scientific discoveries...

Machine learning is amazing...

super human accuracy, self driving cars, automated scientific discoveries...

Problem to solve

Write code

Run on fast machine

Problem to solve

Write code

Run on fast machine

Problem to solve

Machine learning era:

Problem to solve

Problem to solve

Machine learning era:

Problem to solve

Model size and compute cost growing fast

by Eugenio Culurciello

Problem to solve

Machine learning era:

Problem to solve

Data + model templates

Model size and compute cost growing fast

by Eugenio Culurciello

Train on *fastest* machine

Inference on fast & cheap machine

Training costs growing exponentially

by Open Al

42 Years of Microprocessor Trend Data

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2017 by K. Rupp

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2017 by K. Rupp

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2017 by K. Rupp

Fundamental trade-off between specialization and performance/efficiency.

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten New plot and data collected for 2010-2017 by K. Rupp

-

Models:

CNN

RNN DQNN MLP

Models:

Frameworks:

+~50 startups

Challenge: Efficiently deploying deep learning everywhere

+~50 startups

Gaurav Kapoor, Core Machine Learning

HW+SW optimization is key for efficiency

HW+SW optimization is key for efficiency

Lots of hand-tuning, full automation would be a holy grail

Luis Ceze Professor

Carlos Guestrin Professor

Arvind Krishnamurthy Professor

Zachary Tatlock Assistant Professor

Meghan Cowan

Eddie Yan

Jared Roesch

Steven Lyubomirsky

Tianqi Chen

Haichen Shen

Liang Luo

Logan Weber

Marisa Kirisame

Josh Pollock

Seungyeop Han

Jacob Nelson

Amar Phanishayee

Pratyush Patel

Josh Fromm

Gus Smith

Ziheng Jiang

Luis Ceze Professor

Carlos Guestrin Professor

Zachary Tatlock Assistant Professor

Meghan Cowan

Eddie Yan

Jared Roesch

Steven Lyubomirsky

Tiangi Chen

Haichen Shen

Liang Luo

Josh Pollock

Seungyeop Han

Jacob Nelson

Logan Weber

Pratyush Patel

Lianmin Zheng

Amar Phanishayee

Josh Fromm

Gus Smith

Ziheng Jiang

Luis Ceze Professor

Carlos Guestrin Professor

Zachary Tatlock Assistant Professor

Meghan Cowan

Eddie Yan

Jared Roesch

Steven Lyubomirsky

Tianqi Chen

Haichen Shen

Liang Luo

Marisa Kirisame

Josh Pollock

Seungyeop Han

Jacob Nelson

Logan Weber

Pratyush Patel

Lianmin Zheng

Amar Phanishayee

Josh Fromm

Gus Smith

Ziheng Jiang

PL: High-level support for future ML applications

Compilers: Extensible support for future models, optimizations and hardware architectures

Systems: On-device and cloud-based training, distributed systems for ML

PL: High-level support for future ML applications

Compilers: Extensible support for future models, optimizations and hardware architectures

Systems: On-device and cloud-based training, distributed systems for ML

ML for better ML systems!

PL: High-level support for future ML applications

Compilers: Extensible support for future models, optimizations and hardware architectures

Systems: On-device and cloud-based training, distributed systems for ML

ML for better ML systems!

PL: High-level support for future ML applications

Compilers: Extensible support for future models, optimizations and hardware architectures

Systems: On-device and cloud-based training, distributed systems for ML

ML for better ML systems!

PL: High-level support for future ML applications

Compilers: Extensible support for future models, optimizations and hardware architectures

Systems: On-device and cloud-based training, distributed systems for ML

First major open source compiler collection

First major open source compiler collection

LLVM: Higher-Level IR, new optimizations, easier extensibility

In the age of domain-specialized systems...

First major open source compiler collection

LLVM: Higher-Level IR, new optimizations, easier extensibility

In the age of domain-specialized systems...

Specialized compiler stack for Deep Learning

First major open source compiler collection

LLVM: Higher-Level IR, new optimizations, easier extensibility

End the tyranny of closed deep learning systems!

Tianqi Chen

Sampl

High-Level Differentiable IR

Stvm

High-Level Differentiable IR

Tensor Expression IR

Stvm

High-Level Differentiable IR

LLVM, CUDA, Metal

Tensor Expression IR

Stvm

High-Level Differentiable IR

LLVM, CUDA, Metal

Tensor Expression IR

VTA

graph, params =
 frontend.from_keras(keras_resnet50)
graph, lib, params =
 relay.build(graph, target)

Compile

graph, params = frontend.from_keras(keras_resnet50) graph, lib, params = relay.build(graph, target)

Compile

graph, params =
 frontend.from_keras(keras_resnet50)
graph, lib, params =
 relay.build(graph, target)

Compile

module = runtime.create(graph, lib, tvm.gpu(0))
module.set_input(**params)
module.run(data=data_array)
output = tvm.nd.empty(out_shape, ctx=tvm.gpu(0))
module.get_output(0, output)

input Deployable Module prediction tabby, tabby cat JS Java Python Co

graph, params = frontend.from_keras(keras_resnet50) graph, lib, params = relay.build(graph, target)

Compile

module = runtime.create(graph, lib, tvm.gpu(0)) module.set_input(**params) module.run(data=data_array) output = tvm.nd.empty(out_shape, ctx=tvm.gpu(0)) module.get_output(0, output)

High-Level Differentiable IR

Tensor Expression IR

LLVM, CUDA, Metal

Diverse Hardware backends

ARM

ARM

TVM Open Source Community

📮 dmlc / tvm							
<> Code	() Issu	ues 41	່(ıll requ	iests 30		Projects
Open deep	learning	g compiler	stacl	c for c	pu, gp	u and spe	ecialized
compiler	tensor	deep-learr	ning	dsl	gpu	opencl	metal
© 1,9	68 comm	nits		រ្រៃ 1 k	branch		٦

		O Unwatch	- 283		Unstar	2,449	% Fork 574
1	💷 Wiki	Insights	¢ S	etting	S		
d a	ccelerators	https://tvm.a	i				Edit
	performance	javascript	rocm	tvm	vulkan	spirv	Manage topics
>4	releases	🎎 166 contributors 🛛 🐴 A			م أ ه A	bache-2.0	

TVM Open Source Community

📮 dmlc / t	vm						
<> Code	() Issu	Jes 41	ິ່ງ P	ull requ	ests 30) III F	Projects
Open deep	learning	g compile	r stac	k for c	pu, gpi	u and spe	ecialized
compiler	tensor	deep-lea	rning	dsl	gpu	opencl	metal
1,968 commits			រ៉ៃ 1 k	branch		٦	

Apache governance model: grant project ownership by merit. 11 committers, 29 reviewers, 166 contributors. Contributed by the community, for the community.

Industrial Impact

Vin Sharma, Amazon SageMaker Neo

Amazon: vinarm@ | Twitter: ciphr@

TVM + AWS

- As a back-end for Apache MXNet
 - To deploy easily onto edge devices
 - To improve performance on target hardware

- As a back-end for Apache MXNet
 - To deploy easily onto edge devices
 - To improve performance on target hardware
- As an optimizer for Amazon AI services
 - Amazon Rekognition: To improve end-to-end latency
 - Amazon Alexa: To increase resource efficiency on Echo/Dot

- As a back-end for Apache MXNet
 - To deploy easily onto edge devices
 - To improve performance on target hardware
- As an optimizer for Amazon AI services
 - Amazon Rekognition: To improve end-to-end latency
 - Amazon Alexa: To increase resource efficiency on Echo/Dot
- In a tool chain for Amazon Inferentia

- As a back-end for Apache MXNet
 - To deploy easily onto edge devices
 - To improve performance on target hardware
- As an optimizer for Amazon AI services
 - Amazon Rekognition: To improve end-to-end latency
 - Amazon Alexa: To increase resource efficiency on Echo/Dot
- In a tool chain for Amazon Inferentia

How is AWS enabling adoption of TVM?

In a new service called Amazon SageMaker

Services ~ Res	source Groups 👻 🦒		ے PowerUs	er/rauscn-Isengard @ 👻 I	N. Virginia 🗡	Support -
Amazon SageMaker X	Amazon SageMaker > Dashboard					
Dashboard Search ^{Beta}	Amazon SageMaker introd You can now run predictions execution.	uces Batch Transform s on batch data with Batch Transfor	rm using a model in SageMaker. You p	pay only for the resources used	during the job	×
Ground Truth					Learn mo	re 🖸 📗
Labeling jobs					1	
Labeling datasets						
Labeling workforces	Overview					Hide
Notebook						
Notebook instances		$\frown \circ \land \circ$				
Lifecycle configurations	205	(B) 202	(22302	(22) V	\mathcal{N}	
Git repositories				$(A^{*} A^{*})^{\circ}$))	
Training					/	
Algorithms	Ground Truth	Notebook	Training	Inference		
Training jobs	Set up and manage labeling jobs	Availability of AWS and	Train and tune models at any	Create models from training	liobs	
Hyperparameter tuning jobs	for highly accurate training	SageMaker SDKs and sample	scale. Leverage high	or import external models fo	Dr	
r Inference	datasets using active learning and human labeling.	notebooks to create training Jobs and deploy models.	performance AWS algorithms or bring your own.	hosting to run inferences on data.	new	
Compilation jobs	-					
Model packages	Labeling jobs	Notebook instances	Training jobs	Models		
Models			Hyperparameter tuning	Endpoints		
Endpoint configurations			Jops	Batch transform jobs		
Endpoints						
Batch transform jobs						
AWS Marketplace [2]	Recent activity			Recent activity within the	ne Last 7 day	/s 🔻

How is AWS enabling adoption of TVM?

In a new service called Amazon SageMaker

Noo		Gives Services ~ F	Resource Groups 👻 🔭
aws Services - R	esource Groups 🐱 💈	Amazon SageMaker $ imes$	Amazon SageMaker >
Amazon SageMaker X	Amazon SageMaker > Dashboard	Dashboard Search ^{Beta}	Create comp
Dashboard		Ground Truth	Job settings The settings define the je
Search ^{Beta}	Amazon SageMaker introd You can now run prediction	uces Labeling datasets S ON	Job name
Ground Truth	execution.	Notebook	The name must be from characters are a-z, A-Z, O
Labeling jobs		Notebook instances Lifecycle configurations	IAM role Compiling jobs require p AmaganSageMakerialiA
Labeling datasets		Git repositories	AmazonSageMaker
Labeling workforces	Overview	¹ Training Algorithms	
Notebook		Training jobs	Input configurat
Notebook instances		Hyperparameter tuning jobs	Amazon SageMaker need framework to use.
Lifecycle configurations	(LOS	Inference	
Git repositories		Compilation jobs Model packages	Location of model an Amazon SageMaker nero Amazon 53 directories. C
r Training		Models	s3://bucket-nome/k
Algorithms	Ground Truth	Endpoint configurations	Data input configurat Amazon SageMaker neer which machine learning
Algorithms	Giouna natin	Batch transform jobs	
Training jobs	Set up and manage labeling jobs	AV AWS Marketplace	Machine learning fram
Hyperparameter tuning jobs	for highly accurate training datasets using active learning	Sa	MXNet
 Inference 	and human labeling.	Jo	
Compilation jobs			
Model packages	Labeling jobs		Amazon SageMaker need
Models			SS Output location
Endpoint configurations			Amazon SageMaker need To find a path, go to Am
Endpoints			s3://bucket-nome/k
Batch transform jobs			Target device Amazon SageMaker need instance or to an AWS for
AWS Marketplace	Recent activity		mLm4

How is AWS enabling adoption of TVM?

In a new service called Amazon SageMaker

Noo		Gives Services ~ F	Resource Groups 👻 🔭
aws Services - R	esource Groups 🐱 💈	Amazon SageMaker $ imes$	Amazon SageMaker >
Amazon SageMaker X	Amazon SageMaker > Dashboard	Dashboard Search ^{Beta}	Create comp
Dashboard		Ground Truth	Job settings The settings define the je
Search ^{Beta}	Amazon SageMaker introd You can now run prediction	uces Labeling datasets S ON	Job name
Ground Truth	execution.	Notebook	The name must be from characters are a-z, A-Z, O
Labeling jobs		Notebook instances Lifecycle configurations	IAM role Compiling jobs require p AmaganSageMakerialiA
Labeling datasets		Git repositories	AmazonSageMaker
Labeling workforces	Overview	¹ Training Algorithms	
Notebook		Training jobs	Input configurat
Notebook instances		Hyperparameter tuning jobs	Amazon SageMaker need framework to use.
Lifecycle configurations	(LOS	Inference	
Git repositories		Compilation jobs Model packages	Location of model an Amazon SageMaker nero Amazon 53 directories. C
r Training		Models	s3://bucket-nome/k
Algorithms	Ground Truth	Endpoint configurations	Data input configurat Amazon SageMaker neer which machine learning
Algorithms	Giouna natin	Batch transform jobs	
Training jobs	Set up and manage labeling jobs	AV AWS Marketplace	Machine learning fram
Hyperparameter tuning jobs	for highly accurate training datasets using active learning	Sa	MXNet
 Inference 	and human labeling.	Jo	
Compilation jobs			
Model packages	Labeling jobs		Amazon SageMaker need
Models			SS Output location
Endpoint configurations			Amazon SageMaker need To find a path, go to Am
Endpoints			s3://bucket-nome/k
Batch transform jobs			Target device Amazon SageMaker need instance or to an AWS for
AWS Marketplace	Recent activity		mLm4

How is AWS contributing to TVM?

Releasing all TVM modifications and enhancements in Neo to open source

- Frameworks: TensorFlow, MXNet, PyTorch, ONNX
- Models: ResNet, VGG, Inception, MobileNet, DenseNet, SqueezeNet
- Operators: Several new ops in NNVM/TVM
- Optimizations: Node Annotation, Graph Partitioning, Ring Buffer, NHWC, Graph Tuning
- Acceleration Library: Nvidia TensorRT
- Hardware: Cross-Compilation to ARM, Intel, Nvidia; More Coming Soon
How is AWS contributing to TVM?

Releasing all TVM modifications and enhancements in Neo to open source

- Frameworks: TensorFlow, MXNet, PyTorch, ONNX
- Models: ResNet, VGG, Inception, MobileNet, DenseNet, SqueezeNet
- Operators: Several new ops in NNVM/TVM
- Optimizations: Node Annotation, Graph Partitioning, Ring Buffer, NHWC, Graph Tuning
- Acceleration Library: Nvidia TensorRT
- Hardware: Cross-Compilation to ARM, Intel, Nvidia; More Coming Soon

Sampl

PAUL G. ALLEN SCHOOL of computer science & engineering

Chen Tian, Technical VP

TVM on Huawei's Al portfolio

AI Applications

Application Enablement		Application enabling: Full-pipeline services(ModelArts), hierarchical APIs, and p integrated solutions
Framework		MindSpore: Unified training and inference framework for device, edge, cloud (both standalone and cooperative)
Chip Enabler		CANN: Chip operators library and highly automated operators development toolkit
IP & Chip		Ascend: Al chip series based on unified scalable architecture
ing	Industrial IoT Device	

How do we use TVM

Successful Practice with Audi in Level 4 Autonomous Driving ~ A Complete City Commute Record ~

Driving in the evening

Traffic light identification

Joint developed autonomous driving algorithm gains leading scores in industry authoritative **KITTI 2D/3D/BEV tests!**

High-speed cruise

Pedestrian identification

Traffic Jam Pilot (TJP)

Automatic parking

TVM is working on Atlas series product

Atlas 200 Developer Kit

- 16 TOPS INT8@24 W
- 1 USB type-C, 2 CCM interfaces, 1 GE network port, 1 SD card slot
- 8 GB memory

Atlas 300 AI Accelerator Card

- 64 TOPS INT8@75 W
- 64-channel HD video real-time analysis and JPEG decoding
- 32 GB memory, 204.8 GB/s memory bandwidth
- PCle 3.0 x16, half-height half-length card

Smart Manufacturing

(intelligent quality inspection and flexible manufacturing)

Atlas 500 AI Edge Station

- Capable of processing 16-channel HD videos in the size of a set-top-box (STB)
- Delivers 4x higher performance over counterparts

Atlas 800 AI Appliance

- Provides optimized AI environment based on the standard framework and programming environment
- Leverages high-performance GPU scheduling algorithms, improving resource utilization by over 15%

Intelligent Care

(kindergarten and elderly care)

Smart Transportation

(traffic light tuning, intelligent traffic guiding)

Huawei's Contributions on TVM

8 Contributors:

kun-zh, sgrechanik-h, libing4752, derisavi-huawei, solin319, ehsanmok, gaoxiong-1, jiacunjiang1215

4 Reviewers:

Srkreddy1238, PariksheetPinjari909, siju-Samuel, Xqdan

We are working on:

1. Huawei Ascend ASIC support. 2. Front end to support Darknet, ONNX. 3. Optimization on Auto-TVM, IR extensions. 4.Tensorize, cache read/write, access_ptr API.

In the future we will try to:

1.Codegen for fused operators. 2.NLP support. 3.More optimization. 4. Training Operators.

VGGII on Raspberry Pi 3B

TensorflowLite 32bit fp 66% top-IImageNet accuracy I.42 fps

VGGII on Raspberry Pi 3B

Operators implemented with TVM

TensorflowLite 32bit fp 66% top-IlmageNet accuracy 1.42 fps

Trained binarized model

VGGII on Raspberry Pi 3B

Trained binarized model

Operators implemented with TVM

TensorflowLite 32bit fp 66% top-IImageNet accuracy I.42 fps

TVM 2-bit activation I-bit weight 62% top-I ImageNet accuracy **4.67 fps**

Further down the stack...

Open Source

High-Level Differentiable IR

Tensor Expression IR

VTA Runtime & JIT Compiler

VTA Hardware/Software Interface (ISA)

VTA MicroArchitecture

VTA Simulator

webservices

Open Source Stack Overview

High-Level Differentiable IR

Tensor Expression IR

VTA Runtime & JIT Compiler

VTA Hardware/Software Interface (ISA)

VTA MicroArchitecture

VTA Simulator

💓 amazon

webservices

Open Source Stack Overview

m

VTA Backends

• Simulator: out-ofthe-box testing to write compiler passes

Versatile Tensor Accelerator Stack (VTA)

High-Level Differentiable IR

Tensor Expression IR

VTA Runtime & JIT Compiler

VTA Hardware/Software Interface (ISA)

VTA MicroArchitecture

VTA Simulator

🕕 amazon

webservices

Open Source Stack Overview

m

VTA Backends

• Simulator: out-ofthe-box testing to write compiler passes

Versatile Tensor Accelerator Stack (VTA)

• FPGA: fast design iteration, quick deployment, flexibility

High-Level Differentiable IR

Tensor Expression IR

VTA Runtime & JIT Compiler

VTA Hardware/Software Interface (ISA)

VTA MicroArchitecture

VTA Simulator

webservices

Open Source Stack Overview

m

VTA Backends

• Simulator: out-ofthe-box testing to write compiler passes

Versatile Tensor Accelerator Stack (VTA)

• FPGA: fast design iteration, quick deployment, flexibility

• **ASIC**: industrialstrength efficiency

Hardware Exploration with VTA

HW / SW Constraints

Hardware Exploration with VTA

VTA Design Space

GEMM Intrinsic: e.g. (1,32) x (32,32) vs. (4,16) x (16,16)

BRAM allocation between buffers, register file, micro-op cache

Circuit Pipelining: e.g. for GEMM core between [11, 20] stages

PLL Frequency Sweeps: e.g. 250 vs. 300 vs. 333MHz

1000s

Hardware Exploration with VTA

VTA Design Space

GEMM Intrinsic: e.g. (1,32) x (32,32) vs. (4,16) x (16,16)

1000s

BRAM allocation between buffers, register file, micro-op cache

Circuit Pipelining: e.g. for GEMM core between [11, 20] stages

PLL Frequency Sweeps: e.g. 250 vs. 300 vs. 333MHz

VTA Candidate Designs

#1 Design AAA @ 307GOPs

#2 Design BBB @ 307GOPs

#3 Design CCC @ 307GOPs

#4 Design DDD @ 256GOPs

Needs to pass place & route and pass timing closure

$\sim |0$

Schedule Exploration with VTA

VTA Candidate Designs

#1 Design AAA @ 307GOPs

#2 Design BBB @ 307GOPs

#3 Design CCC @ 307GOPs

#4 Design DDD @ 256GOPs

Needs to pass place & route and pass timing closure

Schedule Exploration with VTA

VTA Candidate Designs

#1 Design AAA @ 307GOPs

#2 Design BBB @ 307GOPs

#3 Design CCC @ 307GOPs

#4 Design DDD @ 256GOPs

Needs to pass place & route and pass timing closure

Operator Performance

Schedule Exploration with VTA

VTA Candidate Designs

#1 Design AAA @ 307GOPs

#2 Design BBB @ 307GOPs

#3 Design CCC @ 307GOPs

#4 Design DDD @ 256GOPs

Needs to pass place & route and pass timing closure

TVM+VTA Stack Goals

acceleration stack

Blue-print for a complete deep learning

TVM+VTA Stack Goals

acceleration stack

- Blue-print for a complete deep learning
- Experimentation framework for crossstack deep learning optimizations

TVM+VTA Stack Goals

- Blue-print for a complete deep learning acceleration stack
- Experimentation framework for crossstack deep learning optimizations
- Open-source community for industrialstrength deep learning acceleration

Carlos Guestrin

Training Deep Learning Models with TVM

Jared Roesch

SSCIMP

Model

inference deployment

Model

inference deployment

training deployment

training deployment

- Automatic generation of gradient programs
- Support for customized data types and FPGA training
- Support for distributed execution, and integration with technology such as PHub (see Liang's talk).

More details on the Relay talk later today!

Road ahead...

Automation

Hardware

On the horizon...

Automation

Hardware

Training on-device

Tradeoff accuracy/ throughput/Joules

AutoDiff with Relay

Automation

Auto quantization

Hardware

Training on-device

Tradeoff accuracy/ throughput/Joules

Full-program optimization

Automated HW design

AutoDiff with Relay

Automation

Auto quantization

Hardware

VTA Chisel design

Training on-device

Tradeoff accuracy/ throughput/Joules

Full-program optimization

Automated HW design

ASIC flow

Training on VTA

EVM.ai Sampl

Big THANKS to our sponsors!

SRO Semiconductor Research Corporation

9:00	Keynote, TVM Overview,TVM @ Am
11:05	Break
11:25	Automation, HW Specialization, Sec
12:30	Boxed lunches
13:30	Training, Programming Systems, Har
15:20	Break, contributors meetup
15:50	Compilers, FPGAs
16:30	Lightning talks
17:35	Community formation
18:10	Social (food, drinks)
20:00	adjourn

